NetLogger

Reference Manual
version 3.3.0, updated 06-September-2005

Dan Gunter, Brian Tierney

This is the manual for NetLogger version 3.3.0

This software is copyright (©) 2004 Ernest Orlando Lawrence Berkeley National Laboratory.
NetLogger License

For further information about this notice, contact Dan Gunter, dkgunter@lbl.gov.

http://dsd.lbl.gov/NetLogger//license.html
mailto:dkgunter@lbl.gov

Table of Contents

1 Overview of NetLogger..................... 1
1.1 What is NetLogger? 1
1.2 NetLogger features and benefits 1
1.3 A brief history of NetLogger 1
1.4 Getting more Information................ 2

2 Requirements..................coiiiina.. 3
2.1 Hardware Requirements. 3
2.2 Software Requirements. 3

3 Installation and Configuration.............. 4
3.1 Download...... ... 4
3.2 Imstall. ... 4

3.2.1 Installation overviewc..o ... 4
3.2.1.1 Imstallation order............. 4

3.2.2 Basic build/install oL 4
3.2.3 Advanced build/install 5
3.2.4 Links to more information............................... 5
3.3 Configurationo 5

4 Using NetLogger..................ii.... 7

4.1 CONCEPES vttt 7
4.1.1 Distributed logging 7
4.1.2 Versioning and Compatibility 7
4.1.3 Output format............... . 7
4.1.4 Output URL ... 8
4.1.5 Naming conventions.ooiiiiiiinennan... 9
4.1.6 Environment Variables................. 9

4.2 Instrumentation APT 9
42,1 O 9
422 JaVA . oo 13
4.2.3 Python 14
4.2.4 Perl ..o 16

4.3 Configuration file formats............. 16
4.3.1 CXML Description. ... 17
4.3.2 CXML Examples ... 17
4.3.3 Converting from CXML to XML 18
4.3.4 Tipson editing CXML 18

4.4 TOOIS . oo 18
4.4.1 nlforward 18
4.4.2 metlogd 20

4.4.3 nldemux 21

4.4.4 nlwrite. ... 26
4.4.5 nleconvert. 28
4.4.6 nlgrep ... 29
447 nlmMergeoo 30
4.4.8 nldata 31
449 nldata_gp ... 33
4.4.10 nlprof. 34
4.5 Analysis. 36
451 nlepU .o 36
4.5.2 nlganglia...... ... 36
4.5.3 nlfindmissing 37
4.5.4 show_histogram............ 40
Indexoiiii i e 42

ii

Chapter 1: Overview of NetLogger 1

1 Overview of NetLogger

1.1 What is NetLogger?

Anyone who has ever tried to debug or do performance analysis of complex distributed
applications knows that it can be a very difficult task. Problems may be in many various
software components, hardware components, networks, the OS, etc.

NetLogger is designed to make this easier. NetLogger is both a methodology for analyzing
distributed systems, and a set of tools to help implement the methodology. In fact, you can
use the NetLogger methodology without using any of the LBNL provided tools.

The NetLogger methodology is really quite simple. It consists of the following:

1. All components must be instrumented to produce monitoring These components in-
clude application software, middleware, operating system, and networks. The more
components that are instrumented the better.

2. All monitoring events must use a common format and common set of attributes. Mon-
itoring events most also all contain a precision timestamp which is in a single timezone
(GMT) and globally synchronized via a clock synchronization method such as NTP.

3. Log all of the following events: Entering and exiting any program or software compo-
nent, and begin/end of all IO (disk and network).

4. Collect all log data in a central location

5. Use event correlation and visualization tools to analyze the monitoring event logs.

The open source NetLogger Toolkit is a set of tools to make it easier to implement this
methodology.

1.2 NetLogger features and benefits

e Lightweight

e Kfficient

e FKasy to integrate
e Flexible

1.3 A brief history of NetLogger

NetLogger has been in existence, in one form or another, since 1994. Since that time it has
been rewritten and renamed, so that the body of software now labeled NetLogger has little
or no relation to the software distributed in the early years of research and development.

Until October 2004, the current version of NetLogger was called NetLogger "Lite’. This
was in contrast to the previously developed toolkit known as NetLogger, which was then
renamed NetLogger "Full’.

The "Full’ NetLogger instrumentation library is very powerful and contains a number of
features such as backup destinations, auto-reconnect, remote activation, a binary format,
etc. Experience showed that most of these features were not needed for the most com-
mon use-cases, so we developed a new, lightweight, easy to use version of the NetLogger
instrumentation library called, initially, NetLogger-lite. This is the version of the toolkit
documented here.

Chapter 1: Overview of NetLogger 2

NetLogger ’Full’ is still available (tho unsupported), and available at
http://dsd.1lbl.gov/NetLogger/full/. The very fast binary format, described
in our HPDC 2002 paper, is only supported by the full library, so programs which generate
more than 1000 events/second will still want to use the full library.

1.4 Getting more Information
e Quick-start guide
http://dsd.1bl.gov/NetLogger/NetLogger-quick-start/
e FAQ

Several Frequently Asked Questions are outlined in the NetLogger FAQ.
Do you have a question that’s not in the FAQ, send it to us and we’ll add
it.

Tutorial

You can view or download the NetLogger tutorial slides from:
http://dsd.1bl.gov/NetLogger//NetLogger-Tutorial.ppt

E-mail list

The email list is in the process of being created. Please email
dkgunter@lbl.gov if you want to be notified when it exists.
o Website

The official NetLogger website is located at:
http://dsd.1bl.gov/NetLogger/

It contains all of the above documentation and more.

http://dsd.lbl.gov/NetLogger/full/
http://dsd.lbl.gov/NetLogger/NetLogger-quick-start/
http://dsd.lbl.gov/NetLogger//FAQ.html
http://dsd.lbl.gov/NetLogger//NetLogger-Tutorial.ppt
mailto:dkgunter@lbl.gov
http://dsd.lbl.gov/NetLogger/

Chapter 2: Requirements 3

2 Requirements

2.1 Hardware Requirements

NetLogger requires no custom hardware, and runs on low-cost commodity PC-style system.

Item Requirements
Memory No particular requirement
Hard disk Enough space for the log files

2.2 Software Requirements

The following software is required to use NetLogger. The Java specific software is only
needed if you are using the Java client API.

Item Requirements

Operating System NetLogger uses Python for most of its utilities and tools. Although
in theory the Python code will run equally well on Unix, Windows,
and MacOS, the software has only been extensively tested on Unix.

Other Software Python version 2.3 or higher (http://www.python.org)
Ant (http://ant.apache.org/index.html)
Log4J (http://logging.apache.org/logdj)
Commons (http://jakarta.apache.org/commons/logging/)
JUnit (http://www.junit.org/)

http://www.python.org
http://ant.apache.org/index.html
http://logging.apache.org/log4j
http://jakarta.apache.org/commons/logging/
http://www.junit.org/

Chapter 3: Installation and Configuration 4

3 Installation and Configuration

3.1 Download
Download NetLogger from: http://dsd.1bl.gov/NetLogger/

3.2 Install

3.2.1 Installation overview

The directory layout NetLogger is arranged by language. The Section 3.2.2 [Basic
install], page 4 installation process uses GNU make (GNU make is available from
http://wwww.gnu.org) to visit these directories and invoke the appropriate build tool. In
the Section 3.2.3 [Advanced install], page 5 installation process, you do this part yourself.

In either case, you need to pick an installation prefiz, which is the parent directory
for script installation, and where Python and C libraries will be copied. This directory
can be system-wide, or located in a user’s home directory. A typical system-wide value is
/usr/local, and a typical user directory is $HOME/local. Whatever value is picked, it will
be referred to as NLHOME in the examples that follow.

Since almost all the tools are written in Python, and thus the installation of the Python
language directory is necessary for most uses of NetLogger.

3.2.1.1 Installation order

If you want to use the C library, either directly or as a SWIG-wrapped
(http://www.swig.org) library to speed up the Python instrumentation, you
should build and install the C directory first. After that, the order of installed modules is
irrelevant.

3.2.2 Basic build/install

1. Unpack the Section 3.1 [Download], page 4 file with Unix ’tar’, then change to the
unpacked directory.

tar xzvf NetLogger-3.3.0.tar.gz
cd NetLogger-3.3.0/

2. Unpack the subdirectories:
make unpack
3. Set the environment variable NLHOME

For sh, bash, zsh, etc.:
NLHOME=/path/to/home ; export NLHOME
For csh, tcsh, etc.:
setenv NLHOME /path/to/home

4. Build
make

5. If that succeeds, install:

http://dsd.lbl.gov/NetLogger/
http://wwww.gnu.org
http://www.swig.org

Chapter 3: Installation and Configuration 5

make install

Note: If you change NLHOME after you build, you will need to run 'make’ again before
the C API will install to the new directory.

3.2.3 Advanced build/install
You can build language-by-language by specifying the language as the make target, e.g. to
build "C’: make ¢

If you need more control over the build process, cd into the appropriate subdir and build

there. Note that to properly build the Python/C wrappers, you should build the C before
the Python directory.

3.2.4 Links to more information

GNU build tools
GNU make: http://www.gnu.org
Autoconf: http://www.gnu.org/software/autoconf/autoconf .html
Automake: http://www.gnu.org/software/automake/automake.html
Libtool: http://www.gnu.org/software/libtool/

Python Distutils module
http://www.python.org/doc/current/inst/inst.html

Apache Ant build tool
http://ant.apache.org/

Simplified Wrapper Interface Generator (SWIG)
http://wuw.swig.org

3.3 Configuration

After you are done building and installing NetLogger, you need to set a couple of environ-
ment variables to put the tools in your PATH.

PATH
Add NLHOME/bin to your PATH

For sh, bash, zsh, etc.:
PATH=${PATH}: ${NLHOME}/bin
export PATH
For csh, tcsh, etc.:
setenv PATH ${PATH}:${NLHOME}/bin

PYTHONPATH

If you installed the Python library system-wide (i.e. NLHOME was the parent directory
of lib/python<version> for your default version of Python) then you don’t need to set
PYTHONPATH. Otherwise, add this to your startup scripts:
For sh, bash, zsh, etc.:
PYTHONPATH=${NLHOME}/1ib/python<version>/site-packages
export PYTHONPATH

http://www.gnu.org
http://www.gnu.org/software/autoconf/autoconf.html
http://www.gnu.org/software/automake/automake.html
http://www.gnu.org/software/libtool/
http://www.python.org/doc/current/inst/inst.html
http://ant.apache.org/
http://www.swig.org

Chapter 3: Installation and Configuration 6

For csh, tcsh, etc.:
setenv PYTHONPATH ${NLHOME}/lib/python<version>/site-packages

Java: CLASSPATH

Copy java/lib/netlogger.jar to an appropriate location and add it to your CLASSPATH.
For example, if it is in ${NLHOME} /lib/java:
For sh, bash, zsh, etc.:
CLASSPATH=${NLHOME}/1ib/java/netlogger.jar:${CLASSPATH}
export PYTHONPATH

For csh, tcsh, etc.:
setenv CLASSPATH ${NLHOME}/lib/java/netlogger.jar:${CLASSPATH}

Chapter 4: Using NetLogger 7

4 Using NetLogger

4.1 Concepts

4.1.1 Distributed logging

When monitoring a distributed system, it is important to be able to collect the log data
remotely and automatically. Manually logging into remote systems and transferring log files
is not a scalable procedure, and sometimes security restrictions may even make it impossible.

NetLogger has been designed from the start to include the ability to transfer data over
the network to a "central" location. It is still possible to use NetLogger to transfer each log
message directly over a TCP socket, but we no longer recommend this practice. Reliability
and availability of wide-area networks is too variable to depend on them to transfer the
requested data without loss or blocking the caller.

Instead, we recommend a "store and forward" approach: writing to local storage (e.g.
local disk) and then, with a separate process, forwarding the information to the network.
This has the advantage of putting the burden of dealing with network failures in a single
external component, the forwarder, rather than making each instrumented program deal
with it separately. Specifically, we recommend that users follow these steps:

e Write logs to local disk: The most consistently available medium that has sufficient
performance and stability for logging is local disk, for example a file in /tmp.

e Run a separate program to send these logs over the network: By running a separate
program, you can re-use its functionality to forward system-level statistics such as CPU
and network utilization.

e Expect network failures: Failure to write to the network should never be fatal to the
forwarder.

e Provide a means for cleaning up: The program can also handle cleanup of old or
runaway log files (something that becomes very important as the application scales).

The NetLogger tools that perform this job are the forwarder, niforward, and the network
server netlogd (for usage details, see Section 4.4.1 [nlforward], page 18, and Section 4.4.2
[netlogd], page 20).

4.1.2 Versioning and Compatibility

Output formats

The NetLogger 3.0 release, and previous releases called "nllite", introduced a new ASCII
format that is a slight variation on the ASCII format called ULM that was used by previous
NetLogger releases. The binary format is not produced, and for the most part not consumed,
by the NetLogger 3.0 or later. For details on this format see the next section.

4.1.3 Output format

Each NetLogger message is called an event or event "record". The event is subdivided into
fields. Each field has three parts, in this order: the typecode, the key, and the value. Here
is an example record:

Chapter 4: Using NetLogger 8

DATE: 2004-04-15T21:36:01.425059
LVL: Info

HOST: 131.243.2.143

TGT: app

EVNT: program.end

n n n n

Each field in the event ends with a single newline ("\n’) character. The last field in each
event is a blank separator line, i.e. just a newline.

Typecode

The typecodes tell how to interpret the value.

‘d’ Double. Double-precision floating-point number (64-bit IEEE float)

‘i Integer. Signed integer from -2147483648 to 2147483648 (32-bit integer)

‘v Long integer. Signed integer from -9223372036854775808 to
9223372036854775808 (64-bit integer)

s String. Up to 4096 characters. Only printable letters are allowed, and the only
whitespace allowed is a space or tab.

‘v’ Timestamp. One of the legal variations of the ISO8601 date format standard:
YYYY-MM-DDThh:mm:ss.<fractional seconds>. The fractional seconds may
be up to 9 digits (nanoseconds).

The key is a string, with the same restrictions for string values (typecode ’s’, above).

Value
The value may be up to 4096 bytes long. Its interpretation depends on the typecode.

4.1.4 Output URL

URL format

The syntax of the URLs is indicated with a simple grammar. Square brackets=[optional].
Square brackets with a "*’ means [0 or more|*.

File url Syntax: [file:][/][path]

Examples:
e Log to a file in /tmp: /tmp/logfile
TCP url Syntax: x-netlog://host[:port]

Examples:
e Log to localhost at port 14830: x-netlog://localhost
e Log to remote host: x-netlog://remote.host:11437

Chapter 4: Using NetLogger 9

UDP url (Python,Perl,C)
Syntax: x-netlog-udp://host[:port]

Examples:
e Log to localhost at port 14830: x-netlog-udp://localhost
e Log to remote host: x-netlog-udp://remote.host:11437

Syslog url (C only)
Syntax: x-syslog:

Examples:

e Log to syslog: x-syslog:

4.1.5 Naming conventions

Standard fields

The following "standard" fields are always present in a NetLogger event:
‘DATE’ The time that this event occurred.

‘LVL’ The logging level of this event. This is one of: ‘Fatal’, ‘Error’, ‘Warn’, ‘Info’,
‘Debug’, ‘Debugl’, ‘Debug?2’, ‘Debug3’, or ‘User’. The default level is ‘Info’.

‘EVNT’ This field is the name of the event. By convention (again, based on the DAMED
WG document), this name is hierarchical with the most detailed information
last and camel-case starting with a lowercase letter. But no component enforces
this convention.

4.1.6 Environment Variables
XXX not done
explain the following ENV variables here
NETLOGGER_DEST
NETLOGGER_ON
NL_GID

4.2 Instrumentation API

4.2.1 C

Overview

To use the C API, follow this pattern:
e Create logging 'module’(s): NL_logger_module ()

e Write messages to module(s): NL_write(), NL_debug(), NL_info(), NL_warn(),
NL_error(), ..etc.

e Cleanup: NL_logger_del()

http://dsd.lbl.gov/NetLogger//damed/"
http://dsd.lbl.gov/NetLogger//damed/"

Chapter 4: Using NetLogger 10

In the NetLogger C API, a module is a user-assigned name for all the parameters as-
sociated with a logging output — log "type", destination URL, and logging level. Every
time you write a message, you specify which module to write it to. So, for example, you
may specify one module for messages to the user on ‘stdout’, and another one for detailed
debugging to a file in ‘/tmp’:

NL_logger_module("user", "-" /* stdout */, NL_LVL_INFO, NL_TGT_X);
NL_logger_module("debug", "/tmp/log", NL_LVL_DEBUG, NL_TGT_DBG, "");

Example code

File Description

logger_example.c

(HTML) (source) Sample high-level C API usage. This is the API that most people
would be expected to use.

lowlevel _example.c

(HTML) (source) Sample ’low-level’ C API usage, illustrating two things:
(1) basic usage, and (2) how to use nl_mask() to select which sets of
events are written at any given time.

Environment variables

If you provide a NULL url to NL_logger_module(), then NetLogger will look for the enviro-
ment variable NETLOGGER_DEST for the URL. If NETLOGGER_DEST is not set, events will
do to stderr.

For example, if you have this code:

~
#include "nl_log.h"
main() {
NL_logger_module("dbg", NULL, NL_LVL_INFO, NL_TYPE_DBG, "");
NL_info("dbg","Hello","to_whom=s","World");
}
J

Then NetLogger events will be sent to the URL specified in NETLOGGER_DEST.

Note: only the C API looks at this environment variable. The Python, Java, and Perl
APIs do not.

Function summary

NL_logger_module()

NL_result_t
NL_logger_module(const char *module,
const char *url,

source/logger_example.html
source/logger_example.html
source/logger_example.c
source/lowlevel_example.html
source/lowlevel_example.html
source/lowlevel_example.c

Chapter 4: Using NetLogger 11

NL_level_t 1level,
NL_tgttype_t ttype,
DN

Parameters
The module name is a free-form string, but please remember that this is a key in a (hidden,
global) hash-table, so long descriptive names will hurt performance.

The wurl is a standard netlogger URL. With no scheme or "file://" it is a filename, with
"x-netlog://<host>[:<port>|" it is a TCP destination, and with "x-syslog://" it uses syslog.
Two special filenames are defined, "-" for stdout and "&" for stderr. If the URL is NULL,
the value of the environment NL_DEST is used, otherwise ‘stderr’.

The level is an integer. Higher numbers indicate more detailed logging, or looked at
another way lower numbers are more ’critical’ messages. The header file defines these
symbolic names:

NL_LVL_NOLOG = 0
Log nothing

NL_LVL_FATAL =1
Fatal error (program termination expected)

NL_LVL_ERROR = 2

Error
NL_LVL_WARN = 3
Warning

NL_LVL_INFO =
Informational (default level)

NL_LVL_DEBUG = 5
Debugging message

NL_LVL_DEBUG1 = 6
More detailed debugging

NL_LVL_DEBUG2 =7
Even more detailed debugging

NL_LVL_DEBUGS3 = 8
Even more detailed debugging yet

NL_LVL_USER =9
This level and all others after it are not reserved

The ttype, or target type, is an integer constant. Different target types will write different
information, by default, in each message. The header file defines symbolic names:

NL_TYPE_APP
"app". Application instrumentation

NL_TYPE_DBG
"dbg". Application debugging

Chapter 4: Using NetLogger 12

NL_TYPE_PATH
"path". Network path monitoring

NL_TYPE_NODE
"node". Host, etc. monitoring

NL_TYPE_X
"any". None of the above..

The ... (variable arguments) depend on the target type. For ‘APP’, ‘DBG’, and ‘NODE’, the
user should add the host IP address or "" to make NetLogger determine it automatically
(via DNS). For the other target types, no argument is expected.

Return value

If the module was created, then NL_OK is returned. Otherwise NL_ERROR is returned,
and an error message should have been written to the screen (stderr).

NL_write()
The various logging functions are named for the logging level they use. The generic function
is NL_write (), which unlike the others takes the level as its first argument.
— NL_write(level, module, event, fmt, args...) Write any level message
— NL_debug3(module, event, fmt, args...) Debug level 3 message.
— NL_debug2(module, event, fmt, args...) Debug level 2 message.
— NL_debugl(module, event, fmt, args...) Debug level 1 message.
— NL_debug(module, event, fmt, args...) Debug (level 0) message.
— NL_info(module, event, fmt, args...) Informational message.
— NL_warn(module, event, fmt, args...) Warning message.
— NL_error(module, event, fmt, args...) Error message.

— NL_fatal(module, event, fmt, args...) Fatal error message.

Parameters

The module is the name given to the module when it was created with NL_logger_
module ().

The event is the name of the event.

The format string (fmt) describes the format of the variable arguments to follow, with
the exception of the "special" arguments required for certain "target types", as explained
below.

The syntax for fmt is <field>=<type-code> space <field>=<type-code> ..etc..,
where <field> is the name of "key" of the key/value pair, and "type-code" is a one-letter
code indicating the datatype. The type codes are enumerated in Section 4.1.3 [Output
format], page 7. To improve performance, you can use a ":" instead of a "=" for values
that will never change (a.k.a. constants) from their initial value.

For the path target type, the first two arguments are always interpreted as ‘"SRC=s
DST=s"’, i.e. the source and destination endpoints. Therefore, when using this target type,
if fmt was "VAL=1" then you would have three (3) values: NL_info("test","my.event",
"VAL=i","12.13.14.15","15.14.13.12","76");

Chapter 4: Using NetLogger 13

NL_flush

There is no internal buffering of NetLogger writes. However, the operating system will
buffer writes to socket or disk for improved efficiency. To force synchronization of data to
the physical medium after every write, set the global variable NL_flush to ’1’. For example:

void my_function(char *msg) {
NL_flush = 1;
NL_debug("main","hello","MSG=s",msg) ;

Activation

The C API also includes the ability to turn on/off instrumentation in a running program.
This is done using an activation trigger file.

XXX: explain activation file format here.

4.2.2 Java

Instrumentation API [Javadoc]

File Description
LogMessage.java
(HTML) (source) A NetLogger message is structured like a dictionary, in other words

a set of strings called "field names", each mapped to a value which
is either a string, integer, or floating-point number,
called "field values".

At creation time, the message event name is set, as well as
the "target type", i.e. kind of logging being performed.

Further name and value pairs are added into the record with add() methods
which, by virtue of returning the newly modified LogMessage instance,
can be chained together. For example:

LogMessage message =
new LogMessage("my.event","app").add("my int",3).add("my float",4.0);

The user can set the timestamp to something other than the
result of system.getCurrentTimeMillis() by calling setTimeStamp().

To format the message as a NetLogger record, call toString().
O@Q@author Dan Gunter dkgunter@@lbl.gov

@Q@author Wolfgang Hoschek whoschek@@lbl.gov
@Qversion $Revision: 1.4 §

source/java/index.html
source/LogMessage.html
source/LogMessage.html
source/LogMessage.java

Chapter 4: Using NetLogger 14

Examples

File Description
NLSample.java
(HTML) (source) Sample use of NL formatter with Java logging facility.

Requires commons and log4j libraries to run.

Run it along the following lines:
java -cp build/classes:lib/log4j.jar:1lib/commons-logging. jar

4.2.3 Python

Instrumentation API [epydoc documentation]

File Description

__init__.py

(HTML) (source)

autolog.py

(HTML) (source) At run-time, automatically instrument a Python module, class, or
(list of) functions. A NetLogger write call is inserted before and
after the function invocation. The logging object, function called to
write a message, event name suffixes, etc. are all configurable.

fakelogging.py
(HTML) (source) Imitiate API of Python logging module, for clients
running in Python < 2.3.x

Use this formula:

try:

import logging # preferred!

except ImportError:

import gov.lbl.dsd.netlogger.fakelogging as logging
log = logging.getLogger (’my_logger’)

source/NLSample.html
source/NLSample.html
source/NLSample.java
source/python/index.html
source/__init__.html
source/__init__.html
source/__init__.py
source/autolog.html
source/autolog.html
source/autolog.py
source/fakelogging.html
source/fakelogging.html
source/fakelogging.py

Chapter 4: Using NetLogger 15

nllite.py (HTML)
(source)

nllogging.py
(HTML) (source)

socketserver.py
(HTML) (source)

Examples

File
autolog_example.py
(HTML) (source)

NetLogger instrumentation API for Python

Read and write NetLogger log messages. Most users of this API will
use the LogOutputStream, which is like a ’Logger’ object in the
Python logging API. The LogInputStream will perform the converse
operation: read and parse a stream of messages.

If available, native C functions will be used for serialization and
deserialization.

Utility functions include a ’Date’ class that automatically handles
conversion between string representations and floating-point seconds
since the epoch, functions to get and set the Grid Job ID, and
low-level parse() and format() functions.

NetLogger adaptation layer for Python’s ’logging’ module.

Provides wrappers for logging.Handler classes, which allow them
to write NetLogger messages instead of a simple string message.
The logging call is modified to indicate that structure, so that
instead of a string input and list of arguments, the log call
takes an event name and dictionary of name/value pairs.

An embeddable NetLogger socket-server. All the user needs to do
is provide a port and a callback function that will receive
the parsed NetLogger nllite.Record objects.

The implementation is based on the standard ’asyncore’ module.

Description

Example use of autolog API.

source/nllite.html
source/nllite.py
source/nllogging.html
source/nllogging.html
source/nllogging.py
source/socketserver.html
source/socketserver.html
source/socketserver.py
source/autolog_example.html
source/autolog_example.html
source/autolog_example.py

Chapter 4: Using NetLogger 16

csv_example.py
(HTML) (source) Example generation of CSV files from NetLogger logs.

Usage:
python csv_example.py < csv_example.log

nllite_example.py

(HTML) (source) Example use of the "low-level" NetLogger Python API.
This API is much more efficient (by a factor of 10-30) than
the Python 2.3 "logging" module interface.

nllogging_example.py
(HTML) (source) Use of NetLogger through the standard Python (2.3 and up) ’logging’ module

4.2.4 Perl

Instrumentation API [POD documentation]

File Description
NetLogger.pm NAME
(HTML) (source) NetLogger - NetLogger logging API.
SYNOPSIS
Provides formatting and timestamping of messages, writing to file and
socket.
DESCRIPTION
Provides formatting and timestamping of messages, writing to file and
socket.
Examples
File Description
sample.pl

(HTML) (source)
perf.pl (HTML)
(source)

4.3 Configuration file formats

As of version 3.2.15, all XML configuration files can either be in XML or use an easier-
to-type format called ’Compact XML’, or CXML. Examples in this manual will be given
in this format, as well as XML. The syntax of XML is already explained in great detail by
others. The syntax of CXML is explained in detail in this section.

Note that CXML is not supposed to be some sort of replacement for XML. It’s just
meant to help out in manual editing of XML configuration files.

Programs that use XML/CXML:

source/csv_example.html
source/csv_example.html
source/csv_example.py
source/nllite_example.html
source/nllite_example.html
source/nllite_example.py
source/nllogging_example.html
source/nllogging_example.html
source/nllogging_example.py
source/perl/index.html
source/NetLogger.html
source/NetLogger.html
source/NetLogger.pm
source/sample.html
source/sample.html
source/sample.pl
source/perf.html
source/perf.pl

Chapter 4: Using NetLogger 17

e Section 4.4.3 [nldemux]|, page 21

e Section 4.5.3 [nlfindmissing], page 37

4.3 e GX ML Deserintion.. #CXML#

e Line-orientation: Each element begins on a new line

e Comments: Lines after the first, whose first non-whitespace character is a pound (#),
are comments.

e Indentation: Indentation indicates nesting.
e Tags: A trailing colon (:) indicates the end of the tag

e Attributes: Name/value attributes on an internal node precede the colon, are enclosed
in square brackets, ([]), name and value are separated by equals (=) and each pair is
separated by a comma (,).

e Text: Text goes after the colon. It may contain whitespace, including newlines. Colons
must be quoted with a backslash (\).

e Lists: A special format for text is a list of items. The format is a series of strings
enclosed in square brackets ([]), separated by commas (,). Lists may contain newlines.
Whitespace between the comma and start of next list item is ignored.

4.3.2 CXML Examples
Here is an example CXML file:

~
#CXML#
This is a comment
Root:
Sub-one: [item one, item two]
Sub-two [color=blue,material=cotton]: descriptive text
Sub-three: NOT only leaf nodes may have text.
Sub-sub-one: Most deeply nested

And the equivalent XML, slightly cleaned up to be more readable:

Chapter 4: Using NetLogger 18

(" N
<?xml version=’1.0’ 7>
<!-- This is a comment -->
<Root>
<Sub-one>

<item>item one</item>

<item>item two </item>
</Sub-one>
<Sub-two color=’blue’ material=’cotton’>descriptive text
</Sub-two>
<Sub-three>NOT only leaf nodes may have text.

<Sub-sub-one>Most deeply nested</Sub-sub-one>

</Sub-three>

</Root>
N J

4.3.3 Converting from CXML to XML

The CXML parser is written in Python, and is part of the NetLogger Python library. In the
source distribution, it can be found under python/gov/1bl/dsd/netlogger/util/cxml.py.}i
If the installation Python directory is NL_PY_HOME this file can also be run as a simple
conversion program that reads from file.cml and prints XML to standard output, as
follows:

python $NL_PY_HOME/site-packages/gov/1bl/dsd/netlogger/util/cxml.py file.cml]]

Note that there is no tool to convert from XML to CXML. There is also no guarantee
that arbitrary XML documents can be translated without loss of information to CXML!
CXML is just meant to make manual entry of configuration files easier.

4.3.4 Tips on editing CXML

Any text editor which can edit Python code should do the indentation needed by CXML
automatically. This works because the : used to indicate nesting in CXML is the same
delimiter used to separate class and function declarations from their (nested) definition in
Python. In addition, the square-bracket lists are similar enough to Python’s list notation
to allow automatic bracket-matching to work.

This has been tested and seems to work well in emacs. A full list of editors available for
Python is kept at: Python editor wiki.

4.4 Tools

This section includes instructions for running several NetLogger tools, including tools to
collect and forward log files, and tools to sort, merge, and extract data from the log files.

4.4.1 nlforward
Synopsis

Forward a directory of log files to a NetLogger URL.

http://www.python.org/moin/PythonEditors

Chapter 4: Using NetLogger 19

Usage
%sage: nlforward.py [options] DIR/PATTERN URL [URL ..]

options:
--version show program’s version number and exit
-h, --help show this help message and exit
-eSEC, --expire=SEC how long, in seconds, before a file is considered}]
’expired’ (default=3600 == 1 hour)

-E, --erase remove (erase) files from disk when they
expire(default=False)
-F, -—-no-flush do NOT flush after each record

-pFILE, --persist=FILE
load/save state in file

-r, —-regexp intepret PATTERN as a regular expression, instead of afj
Unix ’glob’ (default=False)

-sSEC, --scan-interval=SEC
how often, in seconds, to scan DIR for new files
matching PATTERN (default=30)

debug options:

-q, ——quiet print nothing to stderr, overrides ’-v’
-v, —-verbose verbose mode (report throughput)
-d, --debug synonym for -v/--verbose

Detailed description

nlforward scans a directory, and sends every file matching the specified pattern to a Net-
Logger output destination (given as a URL). For explanation of why this tool is important,
See Section 4.1.1 [Distributed logging], page 7.

Scanning entire directories, rather than sending a single file, is essential if you have
multiple independent processes in your instrumented application. For file consistency, only
one process may be writing to a given file. So, each process writes to its own file, but all
files are in the same directory, and the whole directory gets forwarded at once. Nothing
could be easier!

In addition to looking at file modification times and marking files as "expired", nlforward
is also able to recognize when a file is overwritten, i.e. when its creation time changes. This
information is also remembered in the persistent state file (-p option), so that files which
are replaced between the time the forwarder is stopped and restarted are considered "new".

This feature is useful in a variety of contexts, but one common scenario is that the
logging system is "rolling over" a file to a backup file and then re-using that filename for
new data. Assuming that you have configured niforward so that only the main file (not the
rolled-over copies) matches the pattern of files to be forwarded, then each log record will
be forwarded correctly, and only once.

Chapter 4: Using NetLogger 20

Example

(%lforward -q -E -e 600 -s 30 ./’*.log’ -p state.dat X—netlog://some.host:1%380.

Scan the current directory for files ending in ".log" and forward them to the netlogd
on "some.host" port 14380. Files that have not been modified in the last 10 minutes are
considered inactive (closed by the application) and will be erased once all their contents are
forwarded. The current position in various files being forwarded is saved across runs in the
file "state.dat".

4.4.2 netlogd

Synopsis

NetLogger socket server command-line program.
Features:

* listen on either a TCP or UDP socket.

* write to multiple output files.
* write in either NetLogger or older ULM format

Sage
U %sage: netlogd.py [options] [-h]

options:
--version show program’s version number and exit
-h, --help show this help message and exit
-a, ——action Look for NL.ACTION field, act on ’flush’ and ’close’l}
values
-b, ——fork fork into the background after starting up
-f, ——-flush flush all outputs after each record

-pPORT, --port=PORT port number (default=14380)
-rSIZE, —--rollover=SIZE
roll over files at given file size (units allowed)]]
-t, ——timestamp add a "time received" to each message
-U, --udp listen on a UDP instead of TCP socket

Debug options:
-q, ——quiet print nothing to stderr, overrides ’-v’
-v, —--verbose verbose mode (report throughput)
-d, --debug synonym for -v/--verbose

Chapter 4: Using NetLogger 21

Output optiomns:
-oURL, --output=URL
Output URL, use ’nllite’ format
-uURL, --ulm-output=URL
Output file, use ULM format
-xURL, --xml-output=URL
Output file, use XML format

Detailed description

netlogd is a TCP or UDP socket-server that can demultiplex any number of TCP streams,
then re-send the resulting stream to one or more output destinations. The incoming format
must be the standard NetLogger text format, but the output format can also be the older
ULM format, or XML.

Typically, netlogd is configured to write its data to a single output file. But netlogd has
been designed to be flexible. It can have multiple output destinations, each of which can
be a file, syslog, or socket URL. Therefore, it could be used as a "repeater", i.e. it could
both dump a local log file and forward the data on to second network server.

To handle the possibility of very large files, a simple rollover capability has been built in
to netlogd. Once a file reaches a given size, a timestamp is appended to the filename and
a new file is started.

Example

Eletlogd.py -p 14830 -o logfile -o x-netlog://other.host]

Save all streams coming into TCP port 14830 to the file ’logfile’, and also write a copy
to the default port on "other.host".

UDP Example

[netlogd.py --udp -p 14830 -o logfile -o x-netlog://other.host }

Save all streams coming into UDP port 14830 to the file 'logfile’, and also write a copy
to the default port on "other.host".

4.4.3 nldemux
Synopsis
Split an input stream of NetLogger records into multiple

output streams, assigning records to file(s) based on their contents.
In a networking context, this might be called ’content-based routing’.

usage: nldemux.py [options] config-file < data-file

Chapteptiotsing NetLogger 22
--version show program’s version number and exit
-h, --help show this help message and exit
-d, --debug Print debugging info
Usage—e, --stop-on-eof Stop on EOF from input
-v, —-verbose Synonym for -d/--debug

Detailed description

The nldemux.py tool allows input streams to be split across multiple files and directories, ei-
ther of which can be rolled over in response to timeouts or netlogger log messages containing
the special name/value pair ("NL.ACTION","close" type=string).

Typically, nldemux.py is used in conjunction with Section 4.4.2 [netlogd], page 20, to split
and roll over log files collected from multiple distributed network senders. For examples,
see the Usage section below.

Configuration

The behavior of nldemux.py is controlled by its configuration file. This file is in XML.
Below the root element, whose name is ignored (examples use <root>), there are one or more
<section> elements, containing information about which messages to accept and where to
put them.

Chapter 4: Using NetLogger 23

Configuration file format
h

#CXML#
root:
Each section defines a demultiplexing action.
Sections are named.
section [name=NAME]:
Fields used by this section
fields: [field,field,..]
How to split records into files. Field values
are shown as ${FIELD}.
file [pattern=pattern-with-field-values]:
How to split records into directories. Field values
are shown as ${FIELD}.
dir [pattern=pattern-with-field-values]:
Rollover, type can be ’file’ to roll over into
a new file, or ’dir’ to roll over entire directories
of files at once.
rollover[type=filel|dir]:
When nldemux gets a ’close’ action, roll over immediately.
onClose:
Extension pattern for rolled-over files
ext [pattern=pattern-with-field-values]:
Timeout time, with units
timeout: N days | N hours | N minutes | N seconds
Optional. If record matches no section, then it will match the
default section.
default:
default section has just a simple file pattern
file [pattern=file-name]:

Sections

There can be any number of sections. Each section provides information needed to choose
the output path (dir + filename) from an input record. Each item of information in a section
is called an 'option’. A given record may "match" zero or more sections in the configuration.

Default section

If a record matches no sections, and there is a section with the special tag <default>, the
record will be written to the filename and directory specified in the default section.

Section Contents

A section contains one or more record field names, a file pattern and an optional directory
pattern.

Chapter 4: Using NetLogger 24

The file pattern specifies how to construct file names from the values of the input record
fields. Any construct of the form "${FOO3}" will be replaced with the input record’s value
for the field 'FOQO’. All other characters are copied verbatim. Although this syntax looks like
Unix shell variables, unlike in the shell the enclosing {} are required. If that last sentence
made no sense to you, don’t worry aout it.

The directory pattern, which is optional, follows the same rules for substitution.

Matching Records to Sections

An input record "matches" a section if all fields named in the section are also present in
the record.

Note that all fields in a section do not need to be used in file or directory substitution.
Nevertheless, their presence serves as a filter selecting input records that have those fields.

Flushing files

If a NetLogger record with the special name/value pair:
s NL.ACTION: flush

is received, then flush the matching output/section, where "matching" is defined as if
the record were being written.

There is a special syntax used to flush all outputs in a section. The record sent should
contain all fields used for determining the output file name (Note: not necessarily the same
as the list of <field> elements), and all of them should be empty.

For example, if the configuration file contained the following section:

section [name=flushme]:

fields: [Red,Blue]
file [pattern=${RED}.log]:
Then, the following record would flush only the file "mauve.log":
t DATE: 2005-02-03T23:12:56.000000
s EVNT: anything
s LVL: INFO
s Red: mauve
s Blue: turquoise
and the following record would flush all outputs:
t DATE: 2005-02-03T23:12:56.000000
s EVNT: anything
s LVL: INFO
s Red: x
s Blue: turquoise
In essence, this facility combined with the Section 4.4.4 [nlwrite], page 26 utility, allows
a simple form of RPC with nldemuax.

Rolling over files

In order to support moving files out of the way, this program has a <rollover> configuration
option. The suboptions are ’onClose’, 'timeout’, and ’ext’. ’onClose’ is an optional empty
element (i.e. a flag), which directs nldemux to roll over the output file in response to

Chapter 4: Using NetLogger 25

the"NL.ACTION: close" name/value pair. 'timeout’ directs timed rollover of the file, and
accepts plain-english time periods separated by commas, such as "1 day, 4 hours". ’ext’ is
a pattern for the rolled-over filename extension. If the old file was "myfile", the new file is
named "myfile.<ext>", where ext is by default the date in ISO8601 format, ie the special
code ${__date__}.

The recognized pattern special codes are:

${__count__} rollover number (since program started)

${__sec__} number of whole seconds since epoch, UTC

${__date__} yyyy-mm-ddThh:mm:ss, UTC

${FIELD}Y last value of record field "FIELD’

p
J&#ile configuration file (CXML, Section 4.3 [Configuration file
foldhiats]|, page 16

section [name=app_logs]:
fields: [RUN,USER,experiment]
file [pattern=myapp${RUN}_${USER}.log]:
dir [pattern=user-${USER}]:
rollover[type=file]:
onClose:
ext [pattern=exp-${experiment}]:
section [name=ganglia_logs]:
file [pattern=ganglia.log]:
default ’dir’ is ’.’
rollover [type=file]:
onClose:
timeout: 12 hours
default:
file [pattern=default.log]:

Chapter 4: Using NetLogger 26

Sample configuration file (XML

<?xml version=’1.0’7>
<root>
<section name=’app_logs’>
<fields>
<item>RUN</item>
<item>USER</item>
<item>experiment</item>
</fields>
<file pattern=’myapp${RUN}_${USER}.log’></file>
<dir pattern=’user-${USER}’></dir>
<rollover type=’file’>
<onClose></onClose>
<ext pattern=’exp-${experiment}’></ext>
</rollover>
</section>
<section name=’ganglia_logs’>
<file pattern=’ganglia.log’>
<!-- default ’dir’ is ’.’ -->
</file>
<rollover type=’file’>
<onClose></onClose>
<timeout>12 hours</timeout>
</rollover>
</section>
<default>
<file pattern=’default.log’></file>
</default>

</root>
. J

Example

netlogd.py -o’-’ | nldemux.py demux.cfg J

Take the output stream from a NetLogger daemon and write it to files as described by
"demux.cfg'

4.4.4 nlwrite

Synopsis
Write a single message to a NetLogger output URL

Chapter 4: Using NetLogger 27

Usage
usage: nlwrite [options] URL [name=value ..]
Special values:
{n} Message number
{g? Grid Job ID (will look in env, then make UUID)
{h} Host name
options:
--version show program’s version number and exit
-h, --help show this help message and exit

-eEVENT, --event=EVENT
Event name (default=nlwrite.event)
-F, -—-no-flush Do NOT flush after every message
-1LEVEL, --level=LEVEL
Level name [’FATAL’, ’ERROR’, ’WARN’, ’INFO’, ’DEBUG’,I
’DEBUG1’, ’DEBUG2’, ’DEBUG3’] (default=INFO)
-nNUM, --num=NUM Number of times to repeat the message
-pPAUSE, --pause=PAUSE
Pause between each message in seconds (default=0)[}

Detailed description

nlwrite sends formatted NetLogger messages to any valid NetLogger URL. The event name,
message level, and user-defined fields and values can all be specified. Any number of dupli-
cate messages can be written to that destination.

This tool is useful for testing and debugging deployed NetLogger components, sort of
like a "NetLogger ping". It also can be used for logging from shell scripts. For example, you
could use it to instrument the start and end of a forked job. [nlwrite_examples|, page 27.

Examples

e Write 1 message to a socket ("ping’)
nlwrite x-netlog://somehost.somedomain

e Write a start/end event for a forked job in a shell script Write to a file 'main.log’
Include local host name, and Grid Job Identifier
#!/bin/sh
Shell script
echo "do some work"
set NL_GID environment variable so that
both nlwrites pick up on it:
NL_GID=‘uuidgen‘; export NL_GID
echo "fork child ’foo’"
nlwrite -e foo.start main.log HOST={h} GID={g}
foo
nlwrite -e foo.end main.log HOST={h} GID={g}
echo "foo is done, continue.."

Chapter 4: Using NetLogger 28

HitHtH#

$ cat main.log

t DATE: 2004-10-08T20:55:17.237844

s LVL: INFO

s HOST: 131.243.2.143

s GID: ald9c2a0-6af7-4148-bede-b41f4661b311
s EVNT: foo.start

DATE: 2004-10-08T20:55:17.327379

LVL: INFO

HOST: 131.243.2.143

GID: ald9c2a0-6af7-4148-bede-b41£f4661b311
EVNT: foo.end

n n n n o

e Write, to stdout, 100 DEBUG messages. Put the message number in the field 'index’.

nlwrite -n 100 -e my.message -1 DEBUG ’-’ index={n}
t DATE: 2004-10-08T21:03:26.051663

s LVL: DEBUG

i index: 99

s EVNT: my.message

4.4.5 nlconvert
Synopsis
Convert an ’nllite’-format file to ULM, or vice-versa.

The format of the input file is determined using an extremely
simple algorithm:

First 5 characters are ’DATE=’"7
Yes: ULM
No: NetLogger

Usage

usage: nlconvert.py [options] < logfile

options:
--version show program’s version number and exit

Chapter 4: Using NetLogger 29

-h, --help show this help message and exit

Detailed description

Convert an ascii format file to ULM, or vice-versa.

Example

e ULM input file

$ cat filel.ulm
DATE=20040907154737.022505 HOST=127.0.0.1 PROG=unknown NL.EVNT=start_requestRead NI
DATE=20040907154737.022505 HOST=127.0.0.1 PROG=unknown NL.EVNT=start_requestRead NI

e Convert to standard ASCII format

$ cat filel.ulm | nlconvert

s DATE: 2004-09-07T15:47:37.022505
HOST: 127.0.0.1

PROG: unknown

EVNT: start_requestRead

NL.ID: dWoAABnYPUF6UAAA

LVL: O

intl: 1

n n n n n 0

DATE: 2004-09-07T15:47:37.022505
HOST: 127.0.0.1

PROG: unknown

EVNT: start_requestRead

NL.ID: dGoAABnYPUHbTwAA

LVL: O

intl: 1

n n n n n n N0

e Round-trip; convert back to ULM

$ cat filel.ulm | nlconvert | nlconvert
DATE=20040907154737.022505 HOST=127.0.0.1 PROG=unknown NL.EVNT=start_requestRead L
DATE=20040907154737.022505 HOST=127.0.0.1 PROG=unknown NL.EVNT=start_requestRead L

4.4.6 nlgrep

Synopsis

Usage
usage: nlgrep.py [options] regexp file [file ...]

options:
--version show program’s version number and exit

Chapter 4: Using NetLogger 30

-h, --help show this help message and exit
-e, —-—error Print matches to stderr instead of stdout
-c, ——count Print count of matches instead of matches

-H N, —-—-head= N Print N records at head of file

-T N, ——tail= N Print N records at tail of file

-V, —-reverse Invert the sense of matching, to select non-matching
records

Detailed description

nlgrep (also callable as nlgrep.py) filters NetLogger records like the Unix command-line
utility grep. Because the NetLogger ascii format spans multiple lines, 'grep’ does easily not
filter whole records.

Note that plain old 'grep -v’ is still useful, however, for eliminating certain fields from
within each record. For example, the script "grep -v ’'EXTRA:’ file" will eliminate all fields
named 'EXTRA’ from each record in which it occurs in a log file.

Examples

e Show records with event 'bar’ (the input file is called ’foo.log’).
$ nlgrep ’EVNT: bar’ foo.log
e Show records with event 'bar’ or event 'baz’ (the input file is called ’foo.log’).
$ nlgrep ’EVNT: bar | EVNT: baz’ foo.log
e Show records with HOST in domain 131.243.2 (the input file is called ’foo.log’).
$ nlgrep "HOST: 131\.243\.2’ foo.log
e Count records with HOST in domain 131.243.2
$ nlgrep —count '"HOST: 131\.243\.2’ foo.log
e Count records with HOST not in domain 131.243.2
$ nlgrep —reverse —count "HOST: 131\.243\.2’ foo.log
e Show first 10 records with HOST not in domain 131.243.2
$ nlgrep -H 10 "HOST: 131\.243\.2’ foo.log
e Show last 10 records with HOST not in domain 131.243.2
$ nlgrep -T 10 "HOST: 131\.243\.2’ foo.log

4.4.7 nlmerge

Synopsis

Merge multiple NetLogger log files (sorting by timestamp) .

This will work on any combination of one or more files that needs

to be sorted by time. In other words, it is the way to sort a very
large file, as well as combine a large number of very small files.

Chapter 4: Using NetLogger 31

The default output is ’nlsort.out’ There is an option
to set the output file; use a dash (’°-’) to indicate standard output.

Usage
usage: nlmerge.py [options] file file [file ...]
options:
--version show program’s version number and exit
-h, --help show this help message and exit

-bBATCH, --batch=BATCH
Number of records per temp file (default=1000)

-DDIR, --dir=DIR Directory for temporary files (default=/tmp)

-oFILE, --output=FILE
Output file (default=nlsort.out)

-tT1..T2, ——timerange=T1..T2
Include only records between time T1..T2, inclusive.|}
Use two dots to separate the times, given in YYYY-MM-Jj
DDThh:mm:ss.123456 format

Debug options:

-q, —-quiet print nothing to stderr, overrides ’-v’
-v, —-verbose verbose mode (report throughput)
-d, --debug synonym for -v/--verbose

Detailed description

nlmerge combines multiple logfiles into a single, time-ordered, file. It uses temporary disk
files while merging, so the size of the merged files is limited by disk and not memory.

Note that you can use nlmerge as a file sorting tool if you give it only one input file.

Example
nlmerge fool.log foo2.log foo3.log > merged.log

4.4.8 nldata
Synopsis

Transform NetLogger (text) -> Lifelines, Load/Scatter (text)

Usage
usage: nldata.py [options] config-file

Chapter 4: Using NetLogger 32

options:
--version show program’s version number and exit
-h, --help show this help message and exit
-F, -—-format print format info

-iFILE, --input=FILE Input file (default=stdin)
-oFILE, --output=FILE
Output file (default=stdin)
-v, —-verbose Verbose output to stderr (e.g., progress)

Detailed description

nldata.py transforms NetLogger log files into a comma-separated values (CSV)
representation of "lifelines", "loadlines", and "points". For explanation of what those are,
http://dsd.1bl.gov/NetLogger/nlv/.

It takes a configuration file describing which events belong together in lifelines, etc., and
how to group them. Then it produces a simple output format.

Because they read from stdin and write to stdout by default, nldata and nldata_gp can
be set up in a Unix pipeline to gnuplot itself. [nldata_gp_examples|, page 34.

Configuration file format
title: My Graph

type: lifeline

events: a,b,c

labels: start,"",end

ids: GID

groups: HOST

This is a comment.

val: not needed for lifelines
% (end of record)

type: point

events: d,e,f

groups: GID

val: VAL

yA

Draw state-transitions, etc.
as a ’square waveform’

type: square

events: d

labels: state_one,state_two,state_three
val: state-value-field

Output format

ROW Data
1 Title # Dataset title
2 t1,62 # x-axis (time) range as 2 floats

http://dsd.lbl.gov/NetLogger/nlv/

Chapter 4: Using NetLogger 33

3 label,label /ra,nge;label, label /range; ... # y-axis labels, ’;’ between groups /
min,max of all values
4 label,label, ... # ’z’-axis labels
5+ x,y,z,conn_flag,value,annotate # see below
Key:
‘x’ x-axis value (float), NOT relative to left edge
‘y’ y-axis value (int 1..N), in same order as line #2 labels
‘2’ z/’color’-axis vaue (int)

‘conn_flag’

this point is connected to the NEXT one (bool)

‘value’ numeric value

‘annotate’

(always 0 for lifelines), NOT scaled in any way

string of annotations, format is name="value’<spc>name="value’..

Example
XXX coming soon.

4.4.9 nldata_gp

Synopsis

Transform Lifelines, Load/Scatter (text) to Gnuplot command, data files

Usage
Usage: nldata_gp.

-c file
-d file
-i file
-o file

-v
gnuplot-cmd

py [-hcdi] gnuplot-cmd...

Print this message

Command output file, defaults to stdout

Data output file, defaults to inline with command file
File to process, defaults to stdin

Plot output file, by default just show on the screen
The gnuplot terminal type is inferred from the file
extension:

.gif -> gif

.mif -> mif (framemaker interchange format)
-png -> png

.ps -> postscript

Verbose output to stderr, e.g. show progress
Commands passed through to gnuplot

Chapter 4: Using NetLogger 34

Detailed description

nldata_gp.py transforms the output of nldata.py into input for gnuplot. By default, both
the "command" and "data" parts of the gnuplot intput are written to standard output.
The user can redirect either of these to a file.

Because they read from stdin and write to stdout by default, nldata.py and nldata_gp.py
can be set up in a Unix pipeline to gnuplot itself. See [nldata_gp_examples], page 34.

Examples

e Display a gnuplot on the terminal from 'my.log’, configuring how to graph it from
‘my.cfg’.

$ cat my.log | nldata.py my.cfg | nldata_gp.py | gnuplot -persist
e Write a gnuplot PNG file from 'my.log’, configuring how to graph it from 'my.cfg’.
$ cat my.log | nldata.py my.cfg | nldata_gp.py -0 my.png | gnuplot -persist

4.4.10 nlprof
Synopsis

Provide a summary of timings in a logfile.

Usage
usage: nlprof.py [-ahp] -cDELIM -sSTART -eEND -kKEYS -iID_FIELD file
options:
--version show program’s version number and exit
-h, --help show this help message and exit
-p, —-prefix Expect start.<something> (default=<something>.start)]]

-cDELIM, --delimiter=DELIM

Set delimiter between <something> and the ’start’ or]}

’end’ string (default=’.’)
-sSTART, —--start=START

Set string that marks the start of a timed code blockj

(default=’start’)

-eEND, --end=END Set string that marks the end of a timed code block]]

(default=’end’)
-kKEYS, --sort-keys=KEYS

Set sort keys. Results will be sorted by each key infj
turn. Keys are (n)ame, (a)vg, (m)in, (M)ax, (c)ount,]]
(i)d(default=’n’); Example: -k anc

-a, --show-all Show all timings in report

-iID_FIELD, --identifier=ID_FIELD
[repeatable] Field name(s) to combine as an identifier]]
for separating start/end events with the same namel]

Chapter 4: Using NetLogger 35

(default=None)

-rFIELD, --rate=FIELD
Field name to use for calculating rate per second. Thel}
formula applied is float(value) / elapsed_time

-R, --csv If TRUE, output comma-separated-values insteadof
aligned columns, and skip some header information]j

Detailed description

nlprof shows, in a simple but useful way, where time is being spent in your application.
To provide the necessary raw data, you must first instrument your application to surround
"performance-critical sections" with a pair of like-named events. You can do this by hand,
or using the autolog facility. See [nlprof_example], page 35.

Example

Using nlprof really consists of 3 steps.
1. Instrument your code

import sys, nllite.nllite

g_log = nllite.nllite.LogOutputStream(sys.stderr)

def my_function(args):
g_log.write("my_function.start",{"other":1,"data":2})
.. body of my_function
g_log.write("my_function.end",{"whatever":"else"})

my_function(1)

2. Save sample output (Start/End events)
t DATE: 2004-07-07T06:32:14.252238

s LVL: INFO

i other: 1

i data: 2

s EVNT: my_function.start

DATE: 2004-07-07T06:32:14.252601
LVL: INFO

whatever: else

s EVNT: my_function.end

n n

3. Run nlprof

Then, to "profile" these results (let’s say they are in a log file called "my_function.log"),
you would type:

$ python nlprof.py my_function.log

Timing report printed at 2004-07-07T06:33:51.303811
All times are in seconds

Distinct start/end blocks: 1

Sort key: block name

Chapter 4: Using NetLogger 36

Name Avg Min Max Count

my_function 0.000319 0.000319 0.000319 1

End of report

4.5 Analysis
This section describes the analysis tools in the NetLogger toolkit.

4.5.1 nlcpu
Synopsis

Write a single message to a NetLogger output URL

Usage
usage: %nlcpu.py [options]

options:
--version show program’s version number and exit
-h, --help show this help message and exit
-a, --all Report all types of utilization (default)
-cNUM, --count=NUM Repeat count times (default=1)
-i, --idle Report ’idle’ utilization
-s, —--sys Report ’system’ utilization
-u, --user Report ’user’ utilization

-wSEC, --wait=SEC Pause wait seconds between each display. (default=1)f

Detailed description

Extract CPU information from the 'vmstat’ program, and write it as NetLogger records.

4.5.2 nlganglia
Synopsis
Read Ganglia in, write NetLogger out.

Usage
usage: nlganglia.py [options] host [port(8649)]

options:

Chapter 4: Using NetLogger 37

--version show program’s version number and exit
-h, --help show this help message and exit
-iSEC, --interval=SEC
poll interval in seconds (60)
-oURL, --output=URL Output URL. Repeatable (stdout)
-wSEC, --duration=SEC
runtime in seconds, O=forever (0)

Metrics, default is —--standard:

-a, ——all Show all metrics available

-s, --standard Show only these metrics: (’load_one’, ’load_five’,|]
’cpu_user’, ’cpu_system’, ’cpu_idle’, ’bytes_in’,|}
’bytes_out’, ’mem_free’)

-v, —-verbose Verbose output

Detailed description

Poll a Ganglia meta-daemon (gmetad) for information, then convert the information to
NetLogger format and send it to a NetLogger destination (file, URL, etc.).

4.5.3 nlfindmissing
Synopsis

Find missing events in lifelines and generate new events
describing them.

Usage
usage: nlfindmissing.py [options] config-file < data-file
options:
--version show program’s version number and exit
-h, --help show this help message and exit
-d, --debug Print debugging info
-v, —-verbose Print debugging info
-r, —--report-ids Report ids, only, of anomalous lifelines
-oURL, --output=URL NetLogger output URL (stdout==’-’)
-p, —-progress Report progress to stdout
-s, —-streaming Do not stop on input EOF

Detailed description

Look for missing events in a stream of NetLogger lifelines, and write these events out along
with optional context information.

Chapter 4: Using NetLogger 38

Configuration

Most of the behavior of this program is controlled by its configuration file. This file is in
either in XML or CXML (See Section 4.3 [Configuration file formats|, page 16), in a format
shared by other tools such as Section 4.5.4 [show_histogram|, page 40.

CXML version:

#CXML#
Elements common to all analysis component configurations
config:

Missing lifeline configuration

lifeline:

Required. Ordered list of events in lifeline
events: [name,name,..]
Optional. Ordered list of event labels
labels: [label,label,..]
Required. Set of event grouping fields
groups: [group,group,..]
Required. Set of event id fields
ids: [id,id,..]
Optional. How to ’time out’ an incomplete lifeline.
timeout:
Default=0. Minimum amount of time to wait.
min: O.. seconds
Default=-1 (Inf). Maximum amount of time to wait
max: —-1,min.. seconds
For dynamic timeouts, how many lifelines to
use as a baseline for a ’normal’ completion time
baseline: 0.. 1lifelines
Only 1 of the next two may be present:
For dynamic timeouts, what percentile of lifeline
completion times that a lifeline must exceeed before
timing it out.
percentile: 0..100
For dynamic timeouts, how many standard deviations
a lifeline’s time must exceed before timing it out.
stddev: 0.. standard deviations
Required. Which missing events trigger an anomaly.

missing:
any event in the lifeline
any:
last event
last:

list of events

include: [event,event,..]
Optional. How much context to include with ’missing’
events. Default is count: 10.
context:

Chapter 4: Using NetLogger 39

number of lifelines of context
count: number
number of standard deviations, in time, of context
stdev: number-of-stdevs
Output all lines from input (requires ’mark’ below).
all:

Optional. Add a field NL.ANOM to all events,

set to 1 for anomalies and O otherwise.

mark:

XML version:

<?xml version=’1.0’7>
<!-- Elements common to all analysis component configurations -->
<config>
<!-- Missing lifeline configuration -->
<lifeline>
<!-- Required. Ordered list of events in lifeline -->
<events>
<item>name</item>
<item>name</item>
<item>..</item>
<!-- (Optional. Ordered list of event labels -->
</events>
<labels>
<item>label</item>
<item>label</item>
<item>..</item>
<!-- Required. Set of event grouping fields -->
</labels>
<groups>
<item>group</item>
<item>group</item>
<item>..</item>
<!-- Required. Set of event id fields -->
</groups>
<ids>
<item>id</item>
<item>id</item>
<item>..</item>
<!-- Optional. How to ’time out’ an incomplete lifeline. -—>
</ids>
<timeout>
<!-- Default=0. Minimum amount of time to wait. -—>
<min>0.. seconds
<!-- Default=-1 (Inf). Maximum amount of time to wait --></min>
<max>-1,min.. seconds

Chapter 4: Using NetLogger 40

<!-- For dynamic timeouts, how many lifelines to -—>
<!-- use as a baseline for a ’normal’ completion time --></max>
<baseline>0.. lifelines
<I-- Only 1 of the next two may be present: -->
<l-- For dynamic timeouts, what percentile of lifeline -->
<!-- completion times that a lifeline must exceeed before -->
<!-- timing it out. --></baseline>
<percentile>0..100
<!-- For dynamic timeouts, how many standard deviations -->
<!-- a lifeline’s time must exceed before timing it out. --></percentile>j]
<stddev>0.. standard deviations
<!-- Required. Which missing events trigger an anomaly. --></stddev>}
</timeout>
<missing>
<I-- any event in the lifeline -->
<any>
<!-- last event -->
</any>
<last>
<!-- 1list of events -—>
</last>
<include>

<item>event</item>
<item>event</item>
<item>..</item>

<!-- Optional. How much context to include with ’missing’ -->
<!-- events. Default is count: 10. -->
</include>
</missing>
<context>
<!-- number of lifelines of context -->
<count>number
<!-- number of standard deviations, in time, of context --></count>]]
<stdev>number-of-stdevs
<!-- Output all lines from input (requires ’mark’ below). —--></stdev>|]
<all>
<!-- Optional. Add a field NL.ANOM to all events, -->
<!-- set to 1 for anomalies and O otherwise. —-->
</all>
</context>
<mark></mark>
</lifeline>
</config>

4.5.4 show_histogram

Chapter 4: Using NetLogger 41

Synopsis

Show a histogram of lifeline latencies

Usage
usage: show_histogram.py [options] config-file < data-file
options:
--version show program’s version number and exit
-h, --help show this help message and exit
-d, --debug Print debugging info

-fFORMAT, --format=FORMAT

Output format: (’table’, ’text’)
-o0FILE, --output=0FILE

Output file (default=stdout)
-p, —-progress Report progress to stdout

Detailed description

Look for missing events in a stream of NetLogger lifelines, and write these events out along
with optional context information.

Chapter 4: Index

Index

A

analysis........ ... il 18, 36
anomaly detection........................ 37, 40
AP C.o 12
APT logging.oovvvnniii 9
archiving......... 18

B

buffering 18
build, advanced 5
build, basic............ 4

C

C,APL. ... 12
collection.......... 18, 20, 21
configuration............ 5, 16
Configuration instructions..................... 6
CXML o 16

D

datamining oL 36
deployment............ 7
download 4

E

Email list 2
Environment Variables 9

F

FAQ . oo 2
forwarding o 18

H

Hardware requirements........................ 3
history ... 1

I

install, advanced 5
install, basic........ 4
installation.............. 4
Installation instructions 4

instrumentation 9

42
L
language APL, C............ 12
logging, distributed 7
M
missing, events 37, 40
module, CAPT............ 12
N
netlogd 20
NetLogger Toolkit 1
NetLogger, history 1
network 18, 20
nleconvert....... 28
nlepu 36
nldata.py ... 31
nldata_gp 33
nldemux.pyo 21
nlforward 18
nlganglia........... ool 36
nlgrep nlgrep.py 29
nlmerge 30
nlprof. 34
nlwrite. 26
Requirements, hardware....................... 3
Requirements, software........................ 3
Server, log. ... 20
server, socket 20
Software requirements. 3
T
tutorial 2
XML o 16

	Overview of NetLogger
	What is NetLogger?
	NetLogger features and benefits
	A brief history of NetLogger
	Getting more Information

	Requirements
	Hardware Requirements
	Software Requirements

	Installation and Configuration
	Download
	Install
	Installation overview
	Installation order

	Basic build/install
	Advanced build/install
	Links to more information

	Configuration

	Using NetLogger
	Concepts
	Distributed logging
	Versioning and Compatibility
	Output format
	Output URL
	Naming conventions
	Environment Variables

	Instrumentation API
	C
	Java
	Python
	Perl

	Configuration file formats
	CXML Description
	CXML Examples
	Converting from CXML to XML
	Tips on editing CXML

	Tools
	nlforward
	netlogd
	nldemux
	nlwrite
	nlconvert
	nlgrep
	nlmerge
	nldata
	nldata_gp
	nlprof

	Analysis
	nlcpu
	nlganglia
	nlfindmissing
	show_histogram

	Index

